Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38437148

RESUMO

In steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems, traditional flickering stimulation patterns face challenges in achieving a trade-off in both BCI performance and visual comfort across various frequency bands. To investigate the optimal stimulation paradigms with high performance and high comfort for each frequency band, this study systematically compared the characteristics of SSVEP and user experience of different stimulation paradigms with a wide stimulation frequency range of 1-60 Hz. The findings suggest that, for a better balance between system performance and user experience, ON and OFF grid stimuli with a Weber contrast of 50% can be utilized as alternatives to traditional flickering stimulation paradigms in the frequency band of 1-25 Hz. In the 25-35 Hz range, uniform flicker stimuli with the same 50% contrast are more suitable. In the higher frequency band, traditional uniform flicker stimuli with a high 300% contrast are preferred. These results are significant for developing high performance and user-friendly SSVEP-based BCI systems.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Humanos , Estimulação Luminosa/métodos , Eletroencefalografia/métodos , Sistemas Computacionais
2.
J Neural Eng ; 21(2)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513290

RESUMO

Objective.Code-modulated visual evoked potential (c-VEP) based brain-computer interfaces (BCIs) exhibit high encoding efficiency. Nevertheless, the majority of c-VEP based BCIs necessitate an initial training or calibration session, particularly when the number of targets expands, which impedes the practicality. To address this predicament, this study introduces a calibration-free c-VEP based BCI employing narrow-band random sequences.Approach.For the encoding method, a series of random sequences were generated within a specific frequency band. The c-VEP signals were subsequently elicited through the application of on-type grid flashes that were modulated by these sequences. For the calibration-free decoding algorithm, filter-bank canonical correlation analysis (FBCCA) was utilized with the reference templates generated from the original sequences. Thirty-five subjects participated into an online BCI experiment. The performances of c-VEP based BCIs utilizing narrow-band random sequences with frequency bands of 15-25 Hz (NBRS-15) and 8-16 Hz (NBRS-8) were compared with that of a steady-state visual evoked potential (SSVEP) based BCI within a frequency range of 8-15.8 Hz.Main results.The offline analysis results demonstrated a substantial correlation between the c-VEPs and the original narrow-band random sequences. After parameter optimization, the calibration-free system employing the NBRS-15 frequency band achieved an average information transfer rate (ITR) of 78.56 ± 37.03 bits/min, which exhibited no significant difference compared to the performance of the SSVEP based system when utilizing FBCCA. The proposed system achieved an average ITR of 102.1 ± 57.59 bits/min in a simulation of a 1000-target BCI system.Significance.This study introduces a novel calibration-free c-VEP based BCI system employing narrow-band random sequences and shows great potential of the proposed system in achieving a large number of targets and high ITR.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Humanos , Eletroencefalografia/métodos , Calibragem , Algoritmos , Estimulação Luminosa
3.
Sci Data ; 11(1): 196, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351064

RESUMO

A steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) system relies on the photic driving response to effectively elicit characteristic electroencephalogram (EEG) signals. However, traditional visual stimuli mainly adopt high-contrast black-and-white flickering stimulations, which are easy to cause visual fatigue. This paper presents an SSVEP dataset acquired at a wide frequency range from 1 to 60 Hz with an interval of 1 Hz using flickering stimuli under two different modulation depths. This dataset contains 64-channel EEG data from 30 healthy subjects when they fixated on a single flickering stimulus. The stimulus was rendered on an LCD display with a refresh rate of 240 Hz. Initially, the dataset was rigorously validated through comprehensive data analysis to investigate SSVEP responses and user experiences. Subsequently, BCI performance was evaluated through offline simulations of frequency-coded and phase-coded BCI paradigms. This dataset provides comprehensive and high-quality data for studying and developing SSVEP-based BCI systems.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Humanos , Algoritmos , Eletroencefalografia , Voluntários Saudáveis , Estimulação Luminosa
4.
Small ; : e2309785, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377279

RESUMO

Wearable soft contact lens sensors for continuous and nondestructive intraocular pressure (IOP) monitoring are highly desired as glaucoma and postoperative myopia patients grow, especially as the eyestrain crowd increases. Herein, a smart closed-loop system is presented that combines a Ti3 C2 Tx MXene-based soft contact lens (MX-CLS) sensor, wireless data transmission units, display, and warning components to realize continuous and nondestructive IOP monitoring/real-time display. The fabricated MX-CLS device exhibits an extremely high sensitivity of 7.483 mV mmHg-1 , good linearity on silicone eyeballs, excellent stability under long-term pressure-release measurement, sufficient transparency with 67.8% transmittance under visible illumination, and superior biocompatibility with no discomfort when putting the MX-CLS sensor onto the Rabbit eyes. After integrating with the wireless module, users can realize real-time monitoring and warning of IOP via smartphones, the demonstrated MX-CLS device together with the IOP monitoring/display system opens up promising platforms for Ti3 C2 Tx materials as the base for multifunctional contact lens-based sensors and continuous and nondestructive IOP measurement system.

5.
Front Neurosci ; 17: 1176344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37539380

RESUMO

Objective: The multi-subject brain-computer interface (mBCI) is becoming a key tool for the analysis of group behaviors. It is necessary to adopt a neural recording system for collaborative brain signal acquisition, which is usually in the form of a fixed wire. Approach: In this study, we designed a wireless group-synchronized neural recording system that supports real-time mBCI and event-related potential (ERP) analysis. This system uses a wireless synchronizer to broadcast events to multiple wearable EEG amplifiers. The simultaneously received broadcast signals are marked in data packets to achieve real-time event correlation analysis of multiple targets in a group. Main results: To evaluate the performance of the proposed real-time group-synchronized neural recording system, we conducted collaborative signal sampling on 10 wireless mBCI devices. The average signal correlation reached 99.8%, the amplitude of average noise was 0.87 µV, and the average common mode rejection ratio (CMRR) reached 109.02 dB. The minimum synchronization error is 237 µs. We also tested the system in real-time processing of the steady-state visual-evoked potential (SSVEP) ranging from 8 to 15.8 Hz. Under 40 target stimulators, with 2 s data length, the average information transfer rate (ITR) reached 150 ± 20 bits/min, and the highest reached 260 bits/min, which was comparable to the marketing leading EEG system (the average: 150 ± 15 bits/min; the highest: 280 bits/min). The accuracy of target recognition in 2 s was 98%, similar to that of the Synamps2 (99%), but a higher signal-to-noise ratio (SNR) of 5.08 dB was achieved. We designed a group EEG cognitive experiment; to verify, this system can be used in noisy settings. Significance: The evaluation results revealed that the proposed real-time group-synchronized neural recording system is a high-performance tool for real-time mBCI research. It is an enabler for a wide range of future applications in collaborative intelligence, cognitive neurology, and rehabilitation.

6.
J Neural Eng ; 20(4)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37604119

RESUMO

Objective. Steady-state visual evoked potential (SSVEP) based brain-computer interfaces (BCIs) often struggle to balance user experience and system performance. To address this challenge, this study employed stimuli in the 55-62.8 Hz frequency range to implement a 40-target BCI speller that offered both high-performance and user-friendliness.Approach. This study proposed a method that presents stable multi-target stimuli on a monitor with a 360 Hz refresh rate. Real-time generation of stimulus matrix and stimulus rendering was used to ensure stable presentation while reducing the computational load. The 40 targets were encoded using the joint frequency and phase modulation method, offline and online BCI experiments were conducted on 16 subjects using the task discriminant component analysis algorithm for feature extraction and classification.Main results. The online BCI system achieved an average accuracy of 88.87% ± 3.05% and an information transfer rate of 51.83 ± 2.77 bits min-1under the low flickering perception condition.Significance. These findings suggest the feasibility and significant practical value of the proposed high-frequency SSVEP BCI system in advancing the visual BCI technology.


Assuntos
Interfaces Cérebro-Computador , Doenças Retinianas , Humanos , Potenciais Evocados Visuais , Povidona , Algoritmos
7.
Microsyst Nanoeng ; 9: 93, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484502

RESUMO

Flexible electrodes have demonstrated better biocompatibility than rigid electrodes in relieving tissue encapsulation and long-term recording. Nonhuman primates are closer to humans in their brains' structural and functional properties, thus making them more suitable than rodents as animal models for potential clinical usage. However, the application of flexible electrodes on nonhuman primates has rarely been reported. In the present study, a flexible multichannel electrode array for nonhuman primates was developed and implemented for extracellular recording in behaving monkeys. To minimize the window of durotomy for reducing possible risks, a guide-tube-compatible implantation solution was designed to deliver the flexible electrodes through the dura into the cortex. The proposed structure for inserting flexible electrodes was characterized ex vivo and validated in vivo. Furthermore, acute recording of multichannel flexible electrodes for the primates was performed. The results showed that the flexible electrodes and implantation method used in this study meet the needs of extracellular recording in nonhuman primates. Task-related neuronal activities with a high signal-to-noise ratio of spikes demonstrated that our whole device is currently a minimally invasive and clinically viable approach for extracellular recording.

8.
J Neural Eng ; 20(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37336205

RESUMO

Objective.Current ear electrodes often require complex placing or long stimulation durations to achieve good detection of steady-state visual evoked potential (SSVEP). To improve the practicability of ear electrode-based SSVEP-BCI (brain-computer interface) system, we developed a high-performance ear electrode that can be easily placed.Approach.Hydrogel based disposable and replaceable semi-dry electrodes are developed to improve the contact impedance and wear feeling. The best combination of electrodes for SSVEP-BCI application around the ear is optimized by assessing the electrode on volunteers, and the performance of the electrode was compared with that of the occipital electrode.Main results.The developed ear hydrogel electrode can achieve an impedance close to that of the wet electrode. Three combinations of ear electrode groups demonstrate high information transfer rate (ITR) and accuracy in SSVEP-BCI applications. According to the rating of the comprehensive assessment and BCI performance in the online session, the behind-aural electrode is the best electrode combination for recording SSVEP in the ear region. The average preparation time is the shortest, and the average impedance is the lowest. The ITR of the behind-aural electrode based SSVEP-BCI system can reach 37.5 ± 18 bits min-1. The stimulus duration was as low as 3 s compared to 5 s or 10 s in other studies.Significance.The accuracy, ITR, and wear feeling can be improved by introducing a semi-dry ear electrode and optimizing the position and the combination of ear electrode. By providing a better trade-off between performance and convenience, the ear electrode-based SSVEP-BCI promises to be used in daily life.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Humanos , Eletroencefalografia/métodos , Eletrodos , Hidrogéis , Estimulação Luminosa/métodos
9.
Nano Lett ; 23(8): 3107-3115, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37042482

RESUMO

Two-terminal self-rectifying (SR)-synaptic memristors are preeminent candidates for high-density and efficient neuromorphic computing, especially for future three-dimensional integrated systems, which can self-suppress the sneak path current in crossbar arrays. However, SR-synaptic memristors face the critical challenges of nonlinear weight potentiation and steep depression, hindering their application in conventional artificial neural networks (ANNs). Here, a SR-synaptic memristor (Pt/NiOx/WO3-x:Ti/W) and cross-point array with sneak path current suppression features and ultrahigh-weight potentiation linearity up to 0.9997 are introduced. The image contrast enhancement and background filtering are demonstrated on the basis of the device array. Moreover, an unsupervised self-organizing map (SOM) neural network is first developed for orientation recognition with high recognition accuracy (0.98) and training efficiency and high resilience toward both noises and steep synaptic depression. These results solve the challenges of SR memristors in the conventional ANN, extending the possibilities of large-scale oxide SR-synaptic arrays for high-density, efficient, and accurate neuromorphic computing.

10.
Artigo em Inglês | MEDLINE | ID: mdl-36752383

RESUMO

Artificial synapses with the capability of optical sensing and synaptic functions are fundamental components to construct neuromorphic visual systems. However, most reported artificial optical synapses require a combination of optical and electrical stimuli to achieve bidirectional synaptic conductance modulation, leading to an increase in the processing time and system complexity. Here, an all-optically controlled artificial synapse based on the graphene/titanium dioxide (TiO2) quantum dot heterostructure is reported, whose conductance could be reversibly tuned by the effects of light-induced oxygen adsorption and desorption. Synaptic behaviors, such as excitatory and inhibitory, short-term and long-term plasticity, and learning-forgetting processes, are implemented using the device. An artificial neural network simulator based on the artificial synapse was used to train and recognize handwritten digits with a recognition rate of 92.2%. Furthermore, a 5 × 5 optical synaptic array that could simultaneously sense and memorize light stimuli was fabricated, mimicking the sensing and memory functionality of the retina. Such an all-optically controlled artificial synapse shows a promising prospect in the application of perception, learning, and memory tasks for future neuromorphic visual systems.

11.
J Neural Eng ; 20(2)2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36827704

RESUMO

Objective.The traditional uniform flickering stimulation pattern shows strong steady-state visual evoked potential (SSVEP) responses and poor user experience with intense flicker perception. To achieve a balance between performance and comfort in SSVEP-based brain-computer interface (BCI) systems, this study proposed a new grid stimulation pattern with reduced stimulation area and low spatial contrast.Approach.A spatial contrast scanning experiment was conducted first to clarify the relationship between the SSVEP characteristics and the signs and values of spatial contrast. Four stimulation patterns were involved in the experiment: the ON and OFF grid stimulation patterns that separately activated the positive or negative contrast information processing pathways, the ON-OFF grid stimulation pattern that simultaneously activated both pathways, and the uniform flickering stimulation pattern that served as a control group. The contrast-intensity and contrast-user experience curves were obtained for each stimulation pattern. Accordingly, the optimized stimulation schemes with low spatial contrast (the ON-50% grid stimulus, the OFF-50% grid stimulus, and the Flicker-30% stimulus) were applied in a 12-target and a 40-target BCI speller and compared with the traditional uniform flickering stimulus (the Flicker-500% stimulus) in the evaluation of BCI performance and subjective experience.Main results.The OFF-50% grid stimulus showed comparable online performance (12-target, 2 s: 69.87 ± 0.74 vs. 69.76 ± 0.58 bits min-1, 40-target, 4 s: 57.02 ± 2.53 vs. 60.79 ± 1.08 bits min-1) and improved user experience (better comfortable level, weaker flicker perception and higher preference level) compared to the traditional Flicker-500% stimulus in both multi-targets BCI spellers.Significance.Selective activation of the negative contrast information processing pathway using the new OFF-50% grid stimulus evoked robust SSVEP responses. On this basis, high-performance and user-friendly SSVEP-based BCIs have been developed and implemented, which has important theoretical significance and application value in promoting the development of the visual BCI technology.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Eletroencefalografia/métodos , Estimulação Luminosa/métodos , Percepção , Algoritmos
12.
J Neural Eng ; 20(1)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36669202

RESUMO

Objective.Existing steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) struggle to balance user experience and system performance. This study proposed an individualized space and phase modulation method to code imperceptible flickers at 60 Hz towards a user-friendly SSVEP-based BCI with high performance.Approach.The individualized customization of visual stimulation took the subject-to-subject variability in cortex geometry into account. An annulus global-stimulation was divided into local-stimulations of eight annular sectors and presented to subjects separately. The local-stimulation SSVEPs were superimposed to simulate global-stimulation SSVEPs with 47space and phase coding combinations. A four-class phase-coded BCI diagram was used to evaluate the simulated classification performance. The performance ranking of all simulated global-stimulation SSVEPs were obtained and three performance levels (optimal, medium, worst) of individualized modulation groups were searched for each subject. The standard-modulation group conforming to the V1 'cruciform' geometry and the non-modulation group were involved as controls. A four-target phase-coded BCI system with SSVEPs at 60 Hz was implemented with the five modulation groups and questionnaires were used to evaluate user experience.Main results.The proposed individualized space and phase modulation method effectively modulated the SSVEP intensity without affecting the user experience. The online BCI system using the 60 Hz stimuli achieved mean information transfer rates of 52.8 ± 1.9 bits min-1, 16.8 ± 2.4 bits min-1, and 42.4 ± 3.0 bits min-1with individualized optimal-modulation, individualized worst-modulation, and non-modulation groups, respectively.Significance.Structural and functional characteristics of the human visual cortex were exploited to enhance the response intensity of SSVEPs at 60 Hz, resulting in a high-performance BCI system with good user experience. This study has important theoretical significance and application value for promoting the development of the visual BCI technology.


Assuntos
Interfaces Cérebro-Computador , Córtex Visual , Humanos , Potenciais Evocados Visuais , Eletroencefalografia/métodos , Estimulação Luminosa/métodos
13.
Microsyst Nanoeng ; 9: 7, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36620394

RESUMO

Implantable intracortical microelectrodes can record a neuron's rapidly changing action potentials (spikes). In vivo neural activity recording methods often have either high temporal or spatial resolution, but not both. There is an increasing need to record more neurons over a longer duration in vivo. However, there remain many challenges to overcome before achieving long-term, stable, high-quality recordings and realizing comprehensive, accurate brain activity analysis. Based on the vision of an idealized implantable microelectrode device, the performance requirements for microelectrodes are divided into four aspects, including recording quality, recording stability, recording throughput, and multifunctionality, which are presented in order of importance. The challenges and current possible solutions for implantable microelectrodes are given from the perspective of each aspect. The current developments in microelectrode technology are analyzed and summarized.

14.
Neuron ; 111(3): 387-404.e8, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36476978

RESUMO

Precise monitoring of internal temperature is vital for thermal homeostasis in mammals. For decades, warm-sensitive neurons (WSNs) within the preoptic area (POA) were thought to sense internal warmth, using this information as feedback to regulate body temperature (Tcore). However, the cellular and molecular mechanisms by which WSNs measure temperature remain largely undefined. Via a pilot genetic screen, we found that silencing the TRPC4 channel in mice substantially attenuated hypothermia induced by light-mediated heating of the POA. Loss-of-function studies of TRPC4 confirmed its role in warm sensing in GABAergic WSNs, causing additional defects in basal temperature setting, warm defense, and fever responses. Furthermore, TRPC4 antagonists and agonists bidirectionally regulated Tcore. Thus, our data indicate that TRPC4 is essential for sensing internal warmth and that TRPC4-expressing GABAergic WSNs function as a novel cellular sensor for preventing Tcore from exceeding set-point temperatures. TRPC4 may represent a potential therapeutic target for managing Tcore.


Assuntos
Regulação da Temperatura Corporal , Temperatura Corporal , Camundongos , Animais , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Hipotálamo , Área Pré-Óptica/fisiologia , Neurônios GABAérgicos , Mamíferos
15.
Opt Express ; 30(10): 16630-16643, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221501

RESUMO

Terahertz (THz) metamaterials for rapid label-free sensing show application potential for the detection of cancer biomarkers. A novel flexible THz metamaterial biosensor based on a low refraction index parylene-C substrate is proposed. The biomarkers are modified on non-metal areas by a three-step modification method that simplifies the modification steps and improves the modified effectivity. Simulation results for non-metal modification illustrate that a bulk refractive index sensitivity of 325 GHz/RIU is achieved, which is larger than that obtained for the traditional metal modification (147 GHz/RIU). Meanwhile, several fluorescence experiments proved the uniform modification effect and selective adsorption capacity of the non-metal modification method. The concentration of the carcinoembryonic antigen (CEA) biomarkers for breast cancer patients tested using this THz biosensor is found to be consistent with results obtained from traditional clinical tests. The limit of detection reaches 2.97 ng/mL. These findings demonstrate that the flexible THz metamaterial biosensor can be extensively used for the rapid detection of cancer biomarkers in the future.


Assuntos
Técnicas Biossensoriais , Neoplasias , Biomarcadores Tumorais , Técnicas Biossensoriais/métodos , Antígeno Carcinoembrionário , Humanos , Refratometria
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2344-2347, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086109

RESUMO

The absence of somatotopic sensory feedback limits the function of conventional prosthetic hands. In this study, we integrated a non-invasive sensory feedback system into a commercial Bebionic hand with new customized surface stimulation electrodes. Multiple modalities of tactile and hand aperture sensory information were conveyed to the amputee via the technique of evoked tactile sensation (ETS) elicited at projected finger map (PFM) of residual limb and an additional electrotactile stimulation in the ipsilateral upper arm. A previously developed anti-stimulus artifact module was used to remove the stimulus artifact from surface electromyographic (sEMG) signals, and the filtered sEMG envelops controlled the speed of open/close of the Bebionic hand. The Ag/AgCl surface stimulation electrode in 10-mm diameter was specially designed to fit the restricted PFM areas for stable perception. We evaluated the alternating-current (AC) impedance magnitude of this electrode stimulated over 12 hours. The perceptual and upper thresholds in pulse-width over 200 days at PFM areas were recorded to assess the stability of the non-invasive sensory neural interface. The efficacy of multi-modality feedback for identification of physical properties of objects was also assessed. Results showed that the AC impedance of customized surface stimulation electrode was stable over 12 hours of stimulation. The perceptual and upper thresholds were stable over 200 days. This non-invasive sensory feedback enabled a forearm amputee to identify the compliance and length of grasped objects with an accuracy of 100 %. Results illustrated that the multi-modality sensory feedback system provided stable and sufficient sensory information for perceptual discrimination of physical features of grasped objects. Clinical Relevance- This study demonstrated a promising and novel way to restore stable sensory feedback non-invasively for commercial hand prostheses.


Assuntos
Amputados , Membros Artificiais , Retroalimentação Sensorial/fisiologia , Mãos , Humanos , Tato/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-35857723

RESUMO

The research on non-invasive BCI is nowadays hitting the bottleneck due to the humble quality of scalp EEG signals. Whereas invasive solutions that offer higher signal quality in contrast are suffocated in their spreading because of the potential surgical complication and health risks caused by electrode implantation. Therefore, it puts forward a necessity to explore a scheme that could both collect high-quality EEG signals and guarantee high-level operation safety.This study proposed a Minimally Invasive Local-skull Electrophysiological Modification method to improve scalp EEG signals qualities at specific brain regions. Six eight-month-old SD rats were used for in vivo verification experiment. A hole with a diameter of about 500 micrometers was drilled in the skull above the visual cortex of rats. Significant changes in rsEEG and SSVEP signals before and after modification were observed. After modification, the skull impedance of rats decreases by about 84 %, the average maximum bandwidth of rsEEG increase by 57 %, and the broadband SNR of SSVEP is increased by 5.13 dB. The time of piezoelectric drilling operation is strictly controlled under 30 seconds for each rat to prevent possible brain damage from overheating. Compared with traditional invasive procedures such as ECoG, Minimally Invasive Local-skull Electrophysiological Modification operation time is shorter and no electrode implantation is needed while it remarkably boosts the scalp EEG signal quality. This technical solution has the potential to replace the use of ECoG in certain application scenarios and further invigorate studies in the field of scalp EEG in the future.


Assuntos
Eletroencefalografia , Crânio , Animais , Eletrocorticografia , Eletroencefalografia/métodos , Fenômenos Eletrofisiológicos , Ratos , Ratos Sprague-Dawley
18.
Microsyst Nanoeng ; 8: 50, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572780

RESUMO

Flexible multichannel electrode arrays (fMEAs) with multiple filaments can be flexibly implanted in various patterns. It is necessary to develop a method for implanting the fMEA in different locations and at various depths based on the recording demands. This study proposed a strategy for reducing the microelectrode volume with integrated packaging. An implantation system was developed specifically for semiautomatic distributed implantation. The feasibility and convenience of the fMEA and implantation platform were verified in rodents. The acute and chronic recording results provied the effectiveness of the packaging and implantation methods. These methods could provide a novel strategy for developing fMEAs with more filaments and recording sites to measure functional interactions across multiple brain regions.

19.
Micromachines (Basel) ; 13(4)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35457933

RESUMO

Metamaterial biosensors have been extensively used to identify cell types and detect concentrations of tumor biomarkers. However, the methods for in situ and non-destruction measurement of cell migration, which plays a key role in tumor progression and metastasis, are highly desirable. Therefore, a flexible terahertz metamaterial biosensor based on parylene C substrate was proposed for label-free and non-destructive detection of breast cancer cell growth and migration. The maximum resonance peak frequency shift achieved 183.2 GHz when breast cancer cell MDA-MB-231 was cultured onto the surface of the metamaterial biosensor for 72 h. A designed polydimethylsiloxane (PDMS) barrier sheet was applied to detect the cell growth rate which was quantified as 14.9 µm/h. The experimental peak shift expressed a linear relationship with the covered area and a quadratic relationship with the distance, which was consistent with simulation results. Additionally, the cell migration indicated that the transform growth factor-ß (TGF-ß) promoted the cancer cell migration. The terahertz metamaterial biosensor shows great potential for the investigation of cell biology in the future.

20.
J Neurosci Methods ; 375: 109597, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35427686

RESUMO

BACKGROUND: In recent years, numerous studies on the brain-computer interface (BCI) have been published. However, the number of targets in most of the existing studies was not enough for many practical applications. NEW METHOD: To achieve highly efficient communications, this study proposed a 120-target BCI system based on code-modulated visual evoked potentials (c-VEPs). Four 31-bit pseudorandom codes were used, and each code generated 30 targets by cyclic shift with a lag of 1 bit. RESULTS: In the online experiments, subjects could select one target in 1.04 s (0.52 s for stimulation and 0.52 s for gaze shifting) with an average information transfer rate (ITR) of 265.74 bits/min. COMPARISON WITH EXISTING METHOD: The proposed system achieved more targets and higher ITR than other recent c-VEP based studies. which attributes to the optimal code combination and the 1-bit lag. CONCLUSION: The results illustrate that the proposed BCI system can achieve a high ITR with a short stimulation time. In addition, the c-VEP paradigm can shorten the training time, which ensures practicality in real applications.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Eletroencefalografia/métodos , Humanos , Exame Neurológico , Estimulação Luminosa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...